Model DT3625 Series

Columbia's Strain Sensors measure fatigue loading experienced by aircraft under various conditions of speed, weight and mission configuration more accurately than by older, less accurate counting accelerometer methods. These sensors allow critical undercarriage structures and surfaces to be more accurately monitored for potential fatigue damage induced by thousands of flight hours, high stress maneuvers and landings. The simplicity and reliability of these sensors also makes them suitable for routine use in the laboratory.

Series DT3625 sensors were developed in response to the need for fatigue measurements in tight spaces, and these sensors offer all the accuracy, ruggedness and ease of installation of the flight-qualified Series DTD2684 sensors. Models are available to compensate materials commonly used in aircraft structural fabrication. Columbia Model 5802 Strain Gage Amplifier is designed to amplify the sensor signals providing both strain and temperature outputs.

Note: Exports from the United States are subject to the licensing requirements of the Export Administration Regulations (EAR) and/or the International Traffic in Arms Regulations (ITAR).

SPE	CIF	ΙCΑΤ	IONS

Series DT3625	
1000Ω, ±2%	
1.025mV/V/1000µ€ Nominal	
10.0VDC	
±0.75% Full Scale Maximum	
±0.5mV/V Typical	
1000Ω, ±2%	
±0.5% Maximum	
±0.005mV/V/°F Maximum	
Less than 0.5%, 5 Minutes @ 2000 $\mu \varepsilon$	
0.05%/°F Maximum	

Environmental²

Temperature Range	-55° to +125°C
Vibration	30g, 10Hz to 2KHz
Humidity	MIL-STD-202 Method 103B
Salt Spray	MIL-STD-202 Method 101D (168 Hours)
Insulation Resistance	100MΩ Minimum @ 500VDC
Dielectric Strength	1050VRMS, 60Hz, 1 Minimum
Altitude	Sea Level to 70,000 Ft.
Shock	100g, 11mSec
Flammability	MIL-STD-202 Method 111A
Fluids	Resistance to short term exposure to fuel, lubricating oils and hydrolic fluids

Physical

Size	0.450" x 0.250" x 0.140" Thick
Encapsulation	Silicone Rubber per MIL-S-23586A Type I, Class 2, Grade A
Weight	Approx. 13gms (Depending on length of leads)
Matrix	0.001" Polyimide
Leads	#26AWG, Teflon Ins, SPC, 12" Minimum
•	•

- 2. Dummy gage(s) bonded to "Z Tab" of same material as
- 3. Active gage bonded to structure under test.
- 4 "Z Tab" mounted to structure with bond or rivet.
- 5. Strain gage leads interwired and soldered to junction
- block. 6. Entire unit covered with protective material.

- Smallest Size ò
- Self Temperature •
- Compensating
- Ease of Installation
- **High Output Two Active** Arms

SCHEMATIC DIAGRAM

A=EXCITATION(+) -BROWN B=SIGNAL OUT(+) -RED C=EXCITATION(-) -ORANGE D=SIGNAL OUT(-) -YELLOW

Ordering Information				
Model	Lead Length	Compensating Material		
DT3625-1	48"	Aluminum 7075-T6 or7050-T73651, IVD		
DT3625-2	48"	Steel, AISI 4130 or HP9-420		
DT3625-3	48"	Titanium TI-6AL-4V, B Annealed		
DT3625-4	48"	Carbon/Epoxy MMS 549 Type 1		
DT3625-5	48"	Steel, Aermet 100		
DT3625-6	48"	Copper Alloy C110		

Fig. 2 Installation of Columbia Strain Sensor

- 1. Strain Sensor bonded to surface under test.
- 2. Leads connected to wire harness.
- 3. Coat sensor and wires with waterproofing material.

ADVANTAGES

Higher level accuracy Twice the output Less installation time No loss of structural integrity Optimum temperature compensation

umbia Research Laboratories, Inc. 1925 MacDade Blvd. Woodlyn, PA 19094 USA Phone: 1.800.813.8471 / Fax: 610.872.3882 / email: sales@crlsensors.com / Web: www.crlsensors.com

1. Bolt or rivet removed from assembly structure.