

## EVCS180X-S-Y-00A

### Linear Hall-Effect Current Sensor Evaluation Board

#### **DESCRIPTION**

The EVCS180X-S-Y-00A is an evaluation board designed to demonstrate the capabilities of the MCS180X family, which are linear Hall-effect current sensors for AC and DC current sensing. The Hall array is differential, which cancels out stray magnetic field. This series of parts provides two power supply options (3.3V or 5V) and six full current ranges of 5A to 50A for the best accuracy in different applications.

The output voltage ( $V_{\text{OUT}}$ ) is proportional to the primary applied current flowing through the primary conductor. The galvanic isolation between the primary conductive path pins and the sensor leads allow the MCS180X to take the place of optoisolators or other expensive isolation devices. The MCS180X is available in an SOIC-8 package.

#### **ELECTRICAL SPECIFICATIONS**

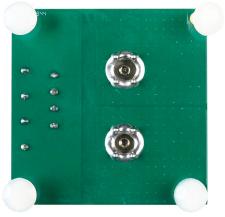
| Parameter                       | Symbol             | Value                                           | Units |
|---------------------------------|--------------------|-------------------------------------------------|-------|
| Supply voltage                  | Vcc                | 3.3 or 5                                        | V     |
| Maximum primary applied current | I <sub>P_MAX</sub> | Six ranges from 5 to 50                         | Α     |
| Output voltage                  | Vout               | $0.5 \times V_{CC} + Sens_{(TYP)} \times I_{P}$ | V     |

#### Note:

1) Sens<sub>(TYP)</sub> is the symbol for "typical sensitivity."

#### **FEATURES**

- 3.3V or 5V Supply Voltage
- 5A to 50A Primary Applied Current
- Differential Hall Array for External Magnetic Field Cancellation
- 0.9mΩ Internal Conductor Resistance
- 100kHz Maximum Bandwidth
- 4µs Minimum Output Rise Time


#### **APPLICATIONS**

- Motor Controls
- Automotive Systems
- Load Detection and Load Management
- Switch-Mode Power Supplies
- Over-Current Fault Protections

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

#### **EVCS180X-S-Y-00A EVALUATION BOARD**





LxWxH (58mmx58.5mmx12mm)

| Board Number     | MPS IC Number |
|------------------|---------------|
| EVCS180X-S-Y-00A | MCS180XGS-Y   |



# EVCS180X-S-Y-00A – LINEAR HALL-EFFECT CURRENT SENSOR EVAL BOARD

### **EVALUATION BOARD BASIC INFORMATION**

| Evaluation Board PN | Typical VCC Supply<br>Voltage (V) | Optimized Primary<br>Current (A) | Typical Sensitivity (mV/A) |
|---------------------|-----------------------------------|----------------------------------|----------------------------|
| EVCS1800-S-12-00A   | 2.2                               | ±12.5                            | 110                        |
| EVCS1800-S-25-00A   | 3.3                               | ±25                              | 55                         |
| EVCS1801-S-12-00A   | F                                 | ±12.5                            | 160                        |
| EVCS1801-S-25-00A   | 5                                 | ±25                              | 80                         |
| EVCS1802-S-05-00A   |                                   | ±5                               | 264                        |
| EVCS1802-S-10-00A   |                                   | ±10                              | 132                        |
| EVCS1802-S-20-00A   |                                   | ±20                              | 66                         |
| EVCS1802-S-30-00A   | 3.3                               | ±30                              | 44                         |
| EVCS1802-S-40-00A   |                                   | ±40                              | 33                         |
| EVCS1802-S-50-00A   |                                   | ±50                              | 26.4                       |
| EVCS1803-S-05-00A   |                                   | ±5                               | 400                        |
| EVCS1803-S-10-00A   | 5                                 | ±10                              | 200                        |
| EVCS1803-S-20-00A   |                                   | ±20                              | 100                        |
| EVCS1803-S-30-00A   |                                   | ±30                              | 66                         |
| EVCS1803-S-40-00A   |                                   | ±40                              | 50                         |
| EVCS1803-S-50-00A   |                                   | ±50                              | 40                         |



#### **QUICK START GUIDE**

- 1. Preset the DC power supply to 3.3V or 5V.
- 2. Turn off the power supply.
- 3. Connect the DC power supply terminals to:
  - a. Positive (+): VCC
  - b. Negative (-): GND
- 4. Connect the current source load terminals to:
  - a. Positive (+): IP+
  - b. Negative (-): IP-
- 5. Turn on the DC power supply and current source. Measure the output result via the VOUT pin.
- 6. C4 determines the sensor's bandwidth. A larger C4 capacitance leads to a lower sensor bandwidth.

#### **EVALUATION BOARD SCHEMATIC**

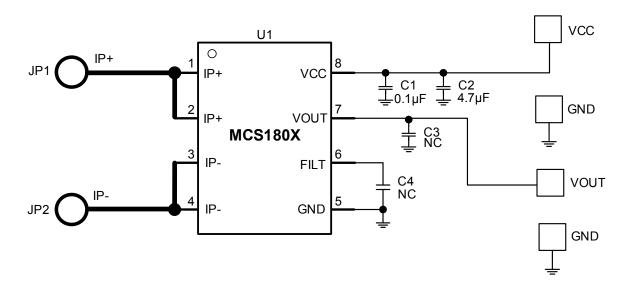
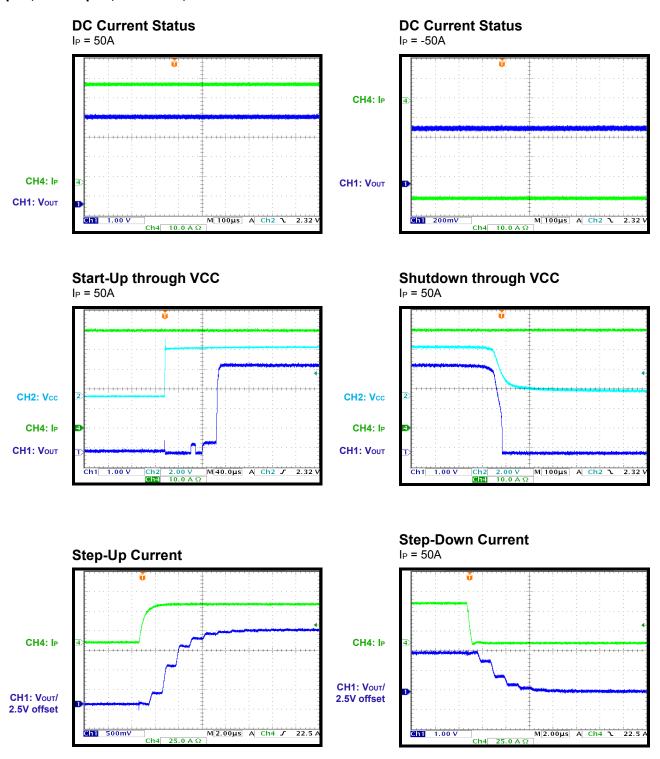



Figure 1: Evaluation Board Schematic

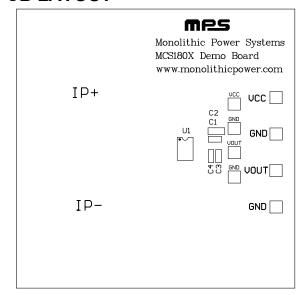


# EVCS180X-S-Y-00A – LINEAR HALL-EFFECT CURRENT SENSOR EVAL BOARD


#### **EVCS180X-S-Y-00A BILL OF MATERIALS**

| Qty | Ref           | Value           | Description                                | Package | Manufacturer            | Manufacturer PN    |
|-----|---------------|-----------------|--------------------------------------------|---------|-------------------------|--------------------|
| 1   | C1            | 0.1µF           | VCC ceramic decoupling capacitor, 16V, X7R | 0603    | Murata                  | GRM188R71C104KA01D |
| 1   | C2            | 4.7μF           | VCC ceramic decoupling capacitor, 16V, X7R | 0805    | Murata                  | GCM21BR71C475KA73L |
| 1   | C3            | NS              | Optional filter cap                        |         |                         |                    |
| 1   | C4            | NS              | Optional filter cap                        |         |                         |                    |
| 4   | Pin<br>header | 2.54mm          | Male pin header                            | DIP     | BKL Electronic          | 10120920           |
| 2   | IP+, IP-      | 6.32<br>Philips | 4-pin screw terminal                       | DIP     | Keystone<br>Electronics | 8191K-ND           |
| 1   | U1            | MCS180X         | Current sensor                             | SOIC-8  | MPS                     | MCS180XGS-Y        |




### **EVB TEST RESULTS**

Performance waveforms are tested on the EVCS1803-S-50-00A evaluation board. V<sub>CC</sub> = 5V, C3 is open, C4 is open,  $T_A = 25$ °C, unless otherwise noted.





#### **PCB LAYOUT**



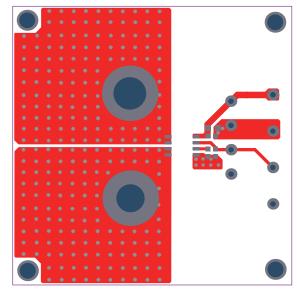



Figure 2: Top Silk

Figure 3: Top Layer

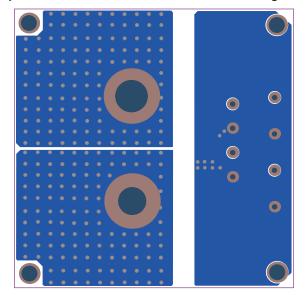



Figure 4: Bottom Layer



# EVCS180X-S-Y-00A - LINEAR HALL-EFFECT CURRENT SENSOR EVAL BOARD

#### **REVISION HISTORY**

| Revision # | Revision Date | Description           | Pages Updated |
|------------|---------------|-----------------------|---------------|
| 1.0        | 12/13/2019    | Initial Release       | -             |
| 1.1        | 05/26/2021    | Technical edit        | All           |
| 1.1        |               | Update the EVB images | 1             |

**Notice:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.