

CSS-SGAF-050-STTN SMA Bulkhead Jack to Unterminated End Cable Assembly

The CSS-SGAF-050-STTN cable assembly provides an SMA bulkhead jack (female socket) to an unterminated, trimmed and tinned connection with a 50 mm length of 0.047 semi-rigid coaxial cable.

Operating from 0 Hz to 8 GHz, the CSS-SGAF-050-STTN cable assembly combines superior performance, compact size, and a convenient threaded mating interface to provide a reliable, easy-to-use cable assembly. Additionally, all Linx coaxial cables and connectors meet RoHS lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

- 0 Hz to 8 GHz operation
- SMA jack (female socket)
 - Gold plated
 - Gold plated brass washer and 1/4"-36UNS hex nut provided
- Unterminated end, trimmed and tinned
- 0.047 semi-rigid coaxial cable

Applications

- LPWA
- Cellular IoT LTE-M (Cat-M1), NB-IoT
- Cellular 5G/4G LTE/3G/2G
- PC, LAN
- ISM Bluetooth®, ZigBee®
- GNSS GPS, Galileo, GLONASS, BeiDou, 07SS
- Automotive, Industrial, Commercial, Enterprise

Table 1. Electrical Specifications

Parameter	Value
Insertion Loss (dB max)	0.6
VSWR (max)	1.5
Impedance	50 Ω
Insulation Resistance	500 MΩ min.

Ordering Information

Part Number	Description	
CSS-SGAF-050-STTN	SMA bulkhead jack (female socket) to unterminated/trimmed end on 50 mm (2.0 in) of	
	0.047 semi-rigid coaxial cable	

Product Dimensions

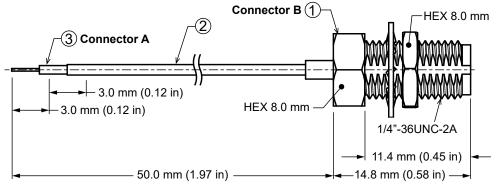


Figure 1. Product Dimensions for the CSS-SGAF-050-STTN Cable Assembly

Table 2. Cable Assembly Components

Item #	Description	Material	Finish
1	Connector, SMA bulkhead jack (female socket) hex nut and washer	Brass	Gold
2	0.047 coaxial cable 0.047 coaxial Black		Black
3	Unterminated connection, trimmed	_	Gold

Table 3. Cable Assembly Mechanical Specifications

<u> </u>				
Parameter	Connector A Unterminated, trimmed coax	Connection B SMA bulkhead jack (female socket)		
Fastening Type	Solder	1/4"-36 UNS-2A threaded coupling		
Recommended Torque	_	0.9 N m (8.0 in lbs)		
Coupling Nut Retention	_	60 lbs. min.		
Connector Durability	_	500 cycles min.		
Weight	3.6 g (0.13 oz)			

Recommended Mounting

Figure 2 shows the recommended mounting hole dimensions for the SMA connector (bulkhead) end of the cable assembly. The hex nut torque should not exceed 10.0 in/lbs max or damage may occur to threads. The max enclosure wall thickness = 3.3 mm (0.13 in.

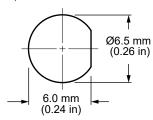


Figure 2. Recommended Mounting Hole Dimensions for the CSS-SGAF-050-STTN Cable Assembly

Coaxial Cable Specifications

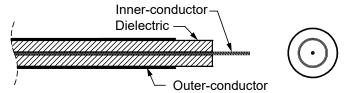


Figure 3. Coaxial Cable Cutaway Diagram

Table 4. Coaxial Cable Material Specifications for 0.047 Semi-Rigid Cable

Parameter	Material	Dimensions
Inner-Conductor	Silver plated copper, 1 strand, 0.28 mm	Ø0.028 mm (0.011 in)
Dielectric	PTFE, natural	Ø0.92 mm (0.036 in)
Outer-Conductor	Silver plated seamless copper tube (wall thickness 1.12 mm)	Ø3.16 mm (0.124 in)

Table 5. Coaxial Cable Electrical and Physical Specifications for 0.047 Semi-Rigid Cable

Parameter	Value
Nominal Impedance	50 Ω
Nominal Capacitance	98 pF/m
Operating Temperature Range	-55 ° C to +125 °C
Minimum Inside Bend radius	6.35 mm (0.25 in)
Spark Test	3.0 kV

Insertion Loss

Figure 4 shows the Insertion Loss for CSS-SGAF-050-STTN cable assembly. Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line.

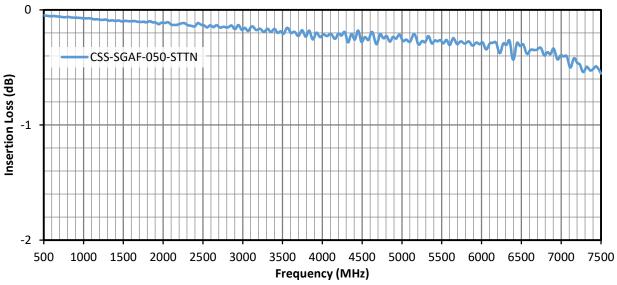


Figure 4. Insertion Loss for the CSS-SGAF-050-STTN Cable Assembly

VSWR

Figure 5 provides the voltage standing wave ratio (VSWR) across the cable assembly's bandwidth for the CSI-SGAF-050-STTN cable assembly. VSWR describes how efficiently power is transmitted through the cable assembly. A lower VSWR value indicates better performance at a given frequency.

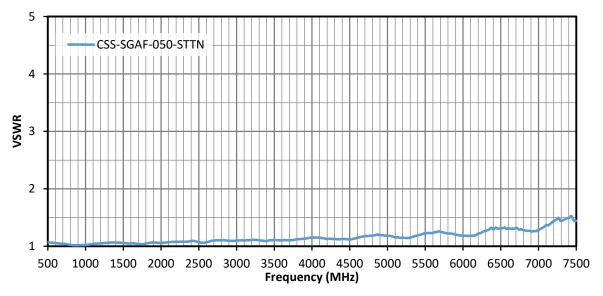


Figure 5. VSWR for the CSS-SGAF-050-STTN Cable Assembly

Packaging Information

The CSS-SGAF-050-STTN cable assembly is packaged in a clear plastic bag, in quantities of 10. Distribution channels may offer alternative packaging options.

Cable Assembly Definitions and Useful Formulas

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the cable assembly. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$VSWR = \frac{10^{\left[\frac{Return\ Loss}{20}\right] + 1}}{10^{\left[\frac{Return\ Loss}{20}\right] - 1}}$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component P_{τ} and the power transmitted to the load after the insertion of the component P_{R} .

Insertion Loss (dB) =
$$10 \log_{10} \frac{P_T}{P_R}$$

Website: http://linxtechnologies.com

Linx Offices: 159 Ort Lane, Merlin, OR, US 97532

Phone: +1 (541) 471-6256

E-MAIL: info@linxtechnologies.com

Linx Technologies reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Wireless Made Simple is a registered trademark of Linx Acquisitions LLC. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Copyright © 2022 Linx Technologies

All Rights Reserved

