

CONSMA020.042-G SMA Jack PCB Edge-Mount Connector

The CONSMA020.042-G is an SMA jack (female socket) PCB edge-mount connector designed for reflow-solder mounting directly to a printed circuit board. Operating from 0 GHz to 18 GHz, the CONSMA020.042-G combines superior performance, compact size, and a convenient threaded interface to provide a reliable, easy-to-use connector. Additionally, all Linx connectors meet RoHS lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

- 0 to 18 GHz operation
- Gold plating
 - Superior corrosion resistance
- SMA jack (female socket) connection
 - Gold plated beryllium copper center contact
- Direct PCB attachment
- Reflow- or hand-solder assembly

Applications

- LPWA
 - LoRaWAN®, Sigfox®, WiFi HaLow™ (802.11ah)
- Cellular IoT
 - LTE-M (Cat-M1), NB-IoT
- Cellular
 - 5G/4G LTE/3G/2G
- GNSS
 - GPS, Galileo, GLONASS, BeiDou, QZSS
- Industrial/Commercial/Enterprise
- ISM

Table 1. Electrical Specifications

Impedance	50 Ω	
Frequency Range	0 to 18	8 GHz
Voltage Rating	500 V RMS	
Contact Resistance	Center: \leq 2.0 m Ω Outer: \leq 2.0 m Ω	
Select Frequencies	400 MHz to 960 MHz	2.4 GHz
Insertion Loss (dB max)	0.04	0.06
VSWR (max)	1.0	1.0

Ordering Information

Part Number	Description	
CONSMA020.042-G	SMA jack (female socket) PCB edge-mount connector	

Product Dimensions

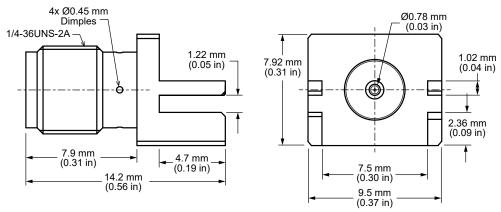


Figure 1. Product Dimensions for the CONSMA020.042-G Connector

Table 2. Connector Components

Model	CONSMA020.042-G	
Connector Part	Material	Finish
Connector Body	Brass	Gold
Center Contact (female socket)	Beryllium Copper	Gold
Insulator	PTFE	_

Recommended PCB Footprint

Figure 2 shows the connectors recommended PCB footprint.

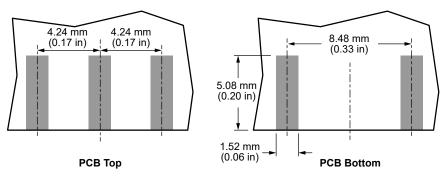


Figure 2. Recommended PCB Dimensions for the CONSMA020.042-G

Connector Performance

Table 3 shows insertion loss and VSWR values for the CONSMA020.042-G connector at commonly used frequencies.

Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line. VSWR describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency.

Table 3. Insertion Loss and VSWR for the CONSMA020.042-G Connector

Band	Low-Band Cellular/ ISM/LPWA	GNSS	Midband Cellular	WiFi/ISM
Frequency Range	400 MHz to 960 MHz	1.1 GHz to 5 GHz	2.4 GHz	5 GHz to 7.125 GHz
Insertion Loss (dB max)	0.04	0.16	0.13	0.23
VSWR (max)	1.0	1.1	1.0	1.1

Table 4. Mechanical Specifications

Model	CONSMA020.042-G	
Mounting Type	PCB Surface-Mount	
Fastening Type	1/4"-36UNS Threaded Coupling	
Recommended Torque	0.57 N·m (5.0 in·lbs)	
Interface in Accordance with	MIL-STD-348A	
Connector Durability	500 cycles min.	
Weight	2.0 g (0.07 oz)	

Table 5. Environmental Specifications

STD, Test Condition		
Corrosion (Salt spray)	MIL-STD-202 Method 101 test condition B	
Thermal Shock	MIL-STD-202 Method 107 test condition B	
Vibration	MIL-STD-202 Method 204 test condition D	
Mechanical Shock	MIL-STD-202 Method 213 test condition I	
Temperature Range	-65 °C to +165 ° C	
Environmental Compliance	RoHS	

Reflow Solder Profile

Figure 3 shows the time and temperature data for reflow soldering the connector to a PCB.

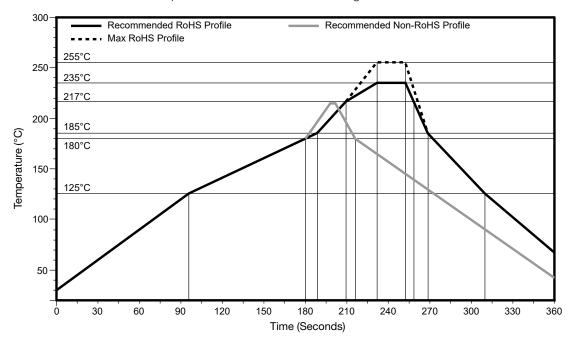


Figure 3. CONSMA020.042-G Recommended Reflow Solder Profile

Packaging Information

The CONSMA020.042-G connector is placed in sealed trays of 100 pcs. Distribution channels may offer alternative packaging options.

Connector & Adapter Definitions and Useful Formulas

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$VSWR = \frac{10^{\left[\frac{Return \ Loss}{20}\right] + 1}}{10^{\left[\frac{Return \ Loss}{20}\right] - 1}}$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component P_{τ} and the power transmitted to the load after the insertion of the component P_{R} .

$$Insertion \ Loss \ (dB) = 10 \log_{10} \frac{P_T}{P_R}$$

Website: http://linxtechnologies.com

Linx Offices: 159 Ort Lane, Merlin, OR, US 97532

Phone: +1 (541) 471-6256

E-MAIL: info@linxtechnologies.com

Linx Technologies reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Wireless Made Simple is a registered trademark of Linx Acquisitions LLC. LoRaWAN is a registered trademark of Semtech Corporation. Sigfox is a registered trademark of SIGFOX. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Copyright © 2021 Linx Technologies

All Rights Reserved

